
UNIT-I

INTRODUCTION TO UML

Contents:

1. Importance of Modeling

2. Principles of Modeling

3. Object Oriented Modeling

4. Conceptual Model of the UML

5. Architecture

6. Software Development Life Cycle

1. Importance of Modeling:

Why do we model?

A model is a simplification at some level of abstraction

We build models to better understand the systems we are developing.

 To help us visualize

 To specify structure or behavior

 To provide template for building system

 To document decisions we have made

2. Principles of Modeling:

 The models we choose have a profound influence on the solution we provide

 Every model may be expressed at different levels of abstraction

 The best models are connected to reality

 No single model is sufficient, a set of models is needed to solve any nontrivial system

UML is a visual modeling language

“A picture is worth a thousand words.” - old saying

Unified Modeling Language:

“A language provides a vocabulary and the rules for combining words [...] for the purpose of

communication.

A modeling language is a language whose vocabulary and rules focus on the conceptual and

physical representation of a system. A modeling language such as the UML is thus a standard

language for software blueprints.”

Usages of UML:

UML is used in the course to

i. document designs

 design patterns / frameworks

ii. represent different views/aspects of design – visualize and construct designs

 static / dynamic / deployment / modular aspects

iii. provide a next-to-precise,common, language –specify visually

 for the benefit of analysis, discussion, comprehension...

abstraction takes precedence over precision!

 20/80 rule

 aim is overview and comprehension; not execution

Object Oriented Modeling:

Traditionally two approaches to modeling a software system

Algorithmically – becomes hard to focus on as the requirements change

Object-oriented – models more closely real world entities

Conceptual Model of the UML:

Conceptual Model of UML

 Building Blocks Rules Common Mechanisms

Things Relationships Diagrams 1) Specifications

 2) Adornments

 1. Class Diagram. 3) Common Divisions

 1) Association 2. Object Diagram. 4) Extensibility Mechanisms

 2) Dependency 3. Use Case Diagram.

 3) Generalization 4. Sequence Diagram. *Stereotypes

 4) Realization 5. Collaboration Diagram. *Tagged Values

 6. State Chart Diagram. 1) Names *Constraints

 7. Activity Diagram. 2) Scope

 9. Deployment Diagram. 3) Visibility

 4) Integrity

 5) Execution

Structural Things Behavioral Things Grouping Things Annotational

 Things

*Classes *Interaction *Packages *notes

*Interfaces *State machines

*Collaborations *States

*Use Case

*Component

*Node

To understand the UML, you need to form a conceptual model of the language, and this requires

learning three major elements: the UML's basic building blocks, the rules that dictate how those

building blocks may be put together, and some common mechanisms that apply throughout the

UML. Once you have grasped these ideas, you will be able to read UML models and create some

basic ones. As you gain more experience in applying the UML, you can build on this conceptual

model, using more advanced features of the language.

Building Blocks of the UML

The vocabulary of the UML encompasses three kinds of building blocks:

1. Things

2. Relationships

3. Diagrams

Things are the abstractions that are first-class citizens in a model; relationships tie these things

together; diagrams group interesting collections of things.

Things in the UML

There are four kinds of things in the UML:

1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

These things are the basic object-oriented building blocks of the UML. You use them to write

well-formed models.

Structural Things

Structural things are the nouns of UML models. These are the mostly static parts of a model,

representing elements that are either conceptual or physical. Collectively, the structural things

are called classifiers.

A class is a description of a set of objects that share the same attributes, operations, relationships,

and semantics. A class implements one or more interfaces. Graphically, a class is rendered as a

rectangle, usually including its name, attributes, and operations, as in Figure 2-1.

Figure 2-1. Classes

http://umlguide2.uw.hu/gloss01.html#gloss01entry32
http://umlguide2.uw.hu/gloss01.html#gloss01entry30
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig01

An interface is a collection of operations that specify a service of a class or component. An

interface therefore describes the externally visible behavior of that element. An interface might

represent the complete behavior of a class or component or only a part of that behavior. An

interface defines a set of operation specifications (that is, their signatures) but never a set of

operation implementations. The declaration of an interface looks like a class with the keyword

«interface» above the name; attributes are not relevant, except sometimes to show constants. An

interface rarely stands alone, however. An interface provided by a class to the outside world is

shown as a small circle attached to the class box by a line. An interface required by a class from

some other class is shown as a small semicircle attached to the class box by a line, as in Figure 2-

2.

Figure 2-2. Interfaces

A collaboration defines an interaction and is a society of roles and other elements that work

together to provide some cooperative behavior that's bigger than the sum of all the elements.

Collaborations have structural, as well as behavioral, dimensions. A given class or object might

participate in several collaborations. These collaborations therefore represent the implementation

of patterns that make up a system. Graphically, a collaboration is rendered as an ellipse with

dashed lines, sometimes including only its name, as in Figure 2-3.

http://umlguide2.uw.hu/gloss01.html#gloss01entry93
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig02
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig02
http://umlguide2.uw.hu/gloss01.html#gloss01entry34
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig03

Figure 2-3. Collaborations

A use case is a description of sequences of actions that a system performs that yield observable

results of value to a particular actor. A use case is used to structure the behavioral things in a

model. A use case is realized by a collaboration. Graphically, a use case is rendered as an ellipse

with solid lines, usually including only its name, as in Figure 2-4.

Figure 2-4. Use Cases

The remaining three thingsactive classes, components, and nodesare all class-like, meaning they

also describe sets of entities that share the same attributes, operations, relationships, and

semantics. However, these three are different enough and are necessary for modeling certain

aspects of an object-oriented system, so they warrant special treatment.

An active class is a class whose objects own one or more processes or threads and therefore can

initiate control activity. An active class is just like a class except that its objects represent

elements whose behavior is concurrent with other elements. Graphically, an active class is

rendered as a class with double lines on the left and right; it usually includes its name, attributes,

and operations, as in Figure 2-5.

Figure 2-5. Active Classes

http://umlguide2.uw.hu/gloss01.html#gloss01entry189
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig04
http://umlguide2.uw.hu/gloss01.html#gloss01entry04
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig05

A component is a modular part of the system design that hides its implementation behind a set of

external interfaces. Within a system, components sharing the same interfaces can be substituted

while preserving the same logical behavior. The implementation of a component can be

expressed by wiring together parts and connectors; the parts can include smaller components.

Graphically, a component is rendered like a class with a special icon in the upper right corner, as

in Figure 2-6.

Figure 2-6. Components

The remaining two elementsartifacts and nodesare also different. They represent physical things,

whereas the previous five things represent conceptual or logical things.

An artifact is a physical and replaceable part of a system that contains physical information

("bits"). In a system, you'll encounter different kinds of deployment artifacts, such as source code

files, executables, and scripts. An artifact typically represents the physical packaging of source or

run-time information. Graphically, an artifact is rendered as a rectangle with the keyword

«artifact» above the name, as in Figure 2-7.

Figure 2-7. Artifacts

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig06
http://umlguide2.uw.hu/gloss01.html#gloss01entry16
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig07

A node is a physical element that exists at run time and represents a computational resource,

generally having at least some memory and, often, processing capability. A set of components

may reside on a node and may also migrate from node to node. Graphically, a node is rendered

as a cube, usually including only its name, as in Figure 2-8.

Figure 2-8. Nodes

These elementsclasses, interfaces, collaborations, use cases, active classes, components, artifacts,

and nodesare the basic structural things that you may include in a UML model. There are also

variations on these, such as actors, signals, and utilities (kinds of classes); processes and threads

(kinds of active classes); and applications, documents, files, libraries, pages, and tables (kinds of

artifacts).

Behavioral Things

Behavioral things are the dynamic parts of UML models. These are the verbs of a model,

representing behavior over time and space. In all, there are three primary kinds of behavioral

things.

First, an interaction is a behavior that comprises a set of messages exchanged among a set of

objects or roles within a particular context to accomplish a specific purpose. The behavior of a

society of objects or of an individual operation may be specified with an interaction. An

interaction involves a number of other elements, including messages, actions, and connectors

(the connection between objects). Graphically, a message is rendered as a directed line, almost

always including the name of its operation, as in Figure 2-9.

Figure 2-9. Messages

Second, a state machine is a behavior that specifies the sequences of states an object or an

http://umlguide2.uw.hu/gloss01.html#gloss01entry110
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig08
http://umlguide2.uw.hu/gloss01.html#gloss01entry88
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig09
http://umlguide2.uw.hu/gloss01.html#gloss01entry158

interaction goes through during its lifetime in response to events, together with its responses to

those events. The behavior of an individual class or a collaboration of classes may be specified

with a state machine. A state machine involves a number of other elements, including states,

transitions (the flow from state to state), events (things that trigger a transition), and activities

(the response to a transition). Graphically, a state is rendered as a rounded rectangle, usually

including its name and its substates, if any, as in Figure 2-10.

Figure 2-10. States

Third, an activity is a behavior that specifies the sequence of steps a computational process

performs. In an interaction, the focus is on the set of objects that interact. In a state machine, the

focus is on the life cycle of one object at a time. In an activity, the focus is on the flows among

steps without regard to which object performs each step. A step of an activity is called an action.

Graphically, an action is rendered as a rounded rectangle with a name indicating its purpose.

States and actions are distinguished by their different contexts.

Figure 2-11. Actions

These three elements interactions, state machines, and activities are the basic behavioral things

that you may include in a UML model. Semantically, these elements are usually connected to

various structural elements, primarily classes, collaborations, and objects.

Grouping Things

Grouping things are the organizational parts of UML models. These are the boxes into which a

model can be decomposed. There is one primary kind of grouping thing, namely, packages.

A package is a general-purpose mechanism for organizing the design itself, as opposed to

classes, which organize implementation constructs. Structural things, behavioral things, and even

other grouping things may be placed in a package. Unlike components (which exist at run time),

a package is purely conceptual (meaning that it exists only at development time). Graphically, a

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig10
http://umlguide2.uw.hu/gloss01.html#gloss01entry03
http://umlguide2.uw.hu/gloss01.html#gloss01entry120

package is rendered as a tabbed folder, usually including only its name and, sometimes, its

contents, as in Figure 2-12.

Figure 2-12. Packages

Packages are the basic grouping things with which you may organize a UML model. There are

also variations, such as frameworks, models, and subsystems (kinds of packages).

Annotational Things

Annotational things are the explanatory parts of UML models. These are the comments you may

apply to describe, illuminate, and remark about any element in a model. There is one primary

kind of annotational thing, called a note. A note is simply a symbol for rendering constraints and

comments attached to an element or a collection of elements. Graphically, a note is rendered as a

rectangle with a dog-eared corner, together with a textual or graphical comment, as in Figure 2-

13.

Figure 2-13. Notes

This element is the one basic annotational thing you may include in a UML model. You'll

typically use notes to adorn your diagrams with constraints or comments that are best expressed

in informal or formal text. There are also variations on this element, such as requirements (which

specify some desired behavior from the perspective of outside the model).

Relationships in the UML

There are four kinds of relationships in the UML:

1. Dependency

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig12
http://umlguide2.uw.hu/gloss01.html#gloss01entry112
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig13
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig13

2. Association

3. Generalization

4. Realization

These relationships are the basic relational building blocks of the UML. You use them to write

well-formed models.

First, a dependency is a semantic relationship between two model elements in which a change to

one element (the independent one) may affect the semantics of the other element (the dependent

one). Graphically, a dependency is rendered as a dashed line, possibly directed, and occasionally

including a label, as in Figure 2-14.

Figure 2-14. Dependencies

Second, an association is a structural relationship among classes that describes a set of links, a

link being a connection among objects that are instances of the classes. Aggregation is a special

kind of association, representing a structural relationship between a whole and its parts.

Graphically, an association is rendered as a solid line, possibly directed, occasionally including a

label, and often containing other adornments, such as multiplicity and end names, as in Figure 2-

15.

Figure 2-15. Associations

Third, a generalization is a specialization/generalization relationship in which the specialized

element (the child) builds on the specification of the generalized element (the parent). The child

shares the structure and the behavior of the parent. Graphically, a generalization relationship is

rendered as a solid line with a hollow arrowhead pointing to the parent, as in Figure 2-16.

Figure 2-16. Generalizations

http://umlguide2.uw.hu/gloss01.html#gloss01entry51
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig14
http://umlguide2.uw.hu/gloss01.html#gloss01entry17
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig15
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig15
http://umlguide2.uw.hu/gloss01.html#gloss01entry75
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig16

Fourth, a realization is a semantic relationship between classifiers, wherein one classifier

specifies a contract that another classifier guarantees to carry out. You'll encounter realization

relationships in two places: between interfaces and the classes or components that realize them,

and between use cases and the collaborations that realize them. Graphically, a realization

relationship is rendered as a cross between a generalization and a dependency relationship, as in

Figure 2-17.

Figure 2-17. Realizations

These four elements are the basic relational things you may include in a UML model. There are

also variations on these four, such as refinement, trace, include, and extend.

Diagrams in the UML

A diagram is the graphical presentation of a set of elements, most often rendered as a connected

graph of vertices (things) and paths (relationships). You draw diagrams to visualize a system

from different perspectives, so a diagram is a projection into a system. For all but the most trivial

systems, a diagram represents an elided view of the elements that make up a system. The same

element may appear in all diagrams, only a few diagrams (the most common case), or in no

diagrams at all (a very rare case). In theory, a diagram may contain any combination of things

and relationships. In practice, however, a small number of common combinations arise, which

are consistent with the five most useful views that comprise the architecture of a software-

intensive system. For this reason, the UML includes thirteen kinds of diagrams:

1. Class diagram

2. Object diagram

3. Component diagram

4. Composite structure diagram

5. Use case diagram

6. Sequence diagram

7. Communication diagram

8. State diagram

9. Activity diagram

10. Deployment diagram

11. Package diagram

12. Timing diagram

13. Interaction overview diagram

A class diagram shows a set of classes, interfaces, and collaborations and their relationships.

http://umlguide2.uw.hu/gloss01.html#gloss01entry136
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig17
http://umlguide2.uw.hu/gloss01.html#gloss01entry56
http://umlguide2.uw.hu/gloss01.html#gloss01entry31

These diagrams are the most common diagram found in modeling object-oriented systems. Class

diagrams address the static design view of a system. Class diagrams that include active classes

address the static process view of a system. Component diagrams are variants of class diagrams.

An object diagram shows a set of objects and their relationships. Object diagrams represent

static snapshots of instances of the things found in class diagrams. These diagrams address the

static design view or static process view of a system as do class diagrams, but from the

perspective of real or prototypical cases.

A component diagram is shows an encapsulated class and its interfaces, ports, and internal

structure consisting of nested components and connectors. Component diagrams address the

static design implementation view of a system. They are important for building large systems

from smaller parts. (UML distinguishes a composite structure diagram, applicable to any class,

from a component diagram, but we combine the discussion because the distinction between a

component and a structured class is unnecessarily subtle.)

A use case diagram shows a set of use cases and actors (a special kind of class) and their

relationships. Use case diagrams address the static use case view of a system. These diagrams are

especially important in organizing and modeling the behaviors of a system.

Both sequence diagrams and communication diagrams are kinds of interaction diagrams. An

interaction diagram shows an interaction, consisting of a set of objects or roles, including the

messages that may be dispatched among them. Interaction diagrams address the dynamic view of

a system. A sequence diagram is an interaction diagram that emphasizes the time-ordering of

messages; a communication diagram is an interaction diagram that emphasizes the structural

organization of the objects or roles that send and receive messages. Sequence diagrams and

communication diagrams represent similar basic concepts, but each diagram emphasizes a

different view of the concepts. Sequence diagrams emphasize temporal ordering, and

communication diagrams emphasize the data structure through which messages flow. A timing

diagram (not covered in this book) shows the actual times at which messages are exchanged.

A state diagram shows a state machine, consisting of states, transitions, events, and activities. A

state diagrams shows the dynamic view of an object. They are especially important in modeling

the behavior of an interface, class, or collaboration and emphasize the event-ordered behavior of

an object, which is especially useful in modeling reactive systems

http://umlguide2.uw.hu/gloss01.html#gloss01entry115
http://umlguide2.uw.hu/gloss01.html#gloss01entry38
http://umlguide2.uw.hu/gloss01.html#gloss01entry190
http://umlguide2.uw.hu/gloss01.html#gloss01entry89
http://umlguide2.uw.hu/gloss01.html#gloss01entry151
http://umlguide2.uw.hu/gloss01.html#gloss01entry36
http://umlguide2.uw.hu/gloss01.html#gloss01entry157

An activity diagram shows the structure of a process or other computation as the flow of control

and data from step to step within the computation. Activity diagrams address the dynamic view

of a system. They are especially important in modeling the function of a system and emphasize

the flow of control among objects.

A deployment diagram shows the configuration of run-time processing nodes and the

components that live on them. Deployment diagrams address the static deployment view of an

architecture. A node typically hosts one or more artifacts.

An artifact diagram shows the physical constituents of a system on the computer. Artifacts

include files, databases, and similar physical collections of bits. Artifacts are often used in

conjunction with deployment diagrams. Artifacts also show the classes and components that they

implement. (UML treats artifact diagrams as a variety of deployment diagram, but we discuss

them separately.)

A package diagram shows the decomposition of the model itself into organization units and their

dependencies.

A timing diagram is an interaction diagram that shows actual times across different objects or

roles, as opposed to just relative sequences of messages. An interaction overview diagram is a

hybrid of an activity diagram and a sequence diagram. These diagrams have specialized uses and

so are not discussed in this book. See the UML Reference Manual for more details.

This is not a closed list of diagrams. Tools may use the UML to provide other kinds of diagrams,

although these are the most common ones that you will encounter in practice.

Rules of the UML

The UML's building blocks can't simply be thrown together in a random fashion. Like any

language, the UML has a number of rules that specify what a well-formed model should look

like. A well-formed model is one that is semantically self-consistent and in harmony with all its

related models.

The UML has syntactic and semantic rules for

Names What you can call things, relationships, and diagrams

http://umlguide2.uw.hu/gloss01.html#gloss01entry07
http://umlguide2.uw.hu/gloss01.html#gloss01entry52

Scope The context that gives specific meaning to a name

Visibility How those names can be seen and used by others

Integrity How things properly and consistently relate to one another

Execution What it means to run or simulate a dynamic model

Models built during the development of a software-intensive system tend to evolve and may be

viewed by many stakeholders in different ways and at different times. For this reason, it is

common for the development team to not only build models that are well-formed, but also to

build models that are

Elided Certain elements are hidden to simplify the view

Incomplete Certain elements may be missing

Inconsistent The integrity of the model is not guaranteed

These less-than-well-formed models are unavoidable as the details of a system unfold and churn

during the software development life cycle. The rules of the UML encourage youbut do not force

youto address the most important analysis, design, and implementation questions that push such

models to become well-formed over time.

Common Mechanisms in the UML

A building is made simpler and more harmonious by the conformance to a pattern of common

features. A house may be built in the Victorian or French country style largely by using certain

architectural patterns that define those styles. The same is true of the UML. It is made simpler by

the presence of four common mechanisms that apply consistently throughout the language.

1. Specifications

2. Adornments

3. Common divisions

4. Extensibility mechanisms

Specifications

The UML is more than just a graphical language. Rather, behind every part of its graphical

notation there is a specification that provides a textual statement of the syntax and semantics of

that building block. For example, behind a class icon is a specification that provides the full set

of attributes, operations (including their full signatures), and behaviors that the class embodies;

visually, that class icon might only show a small part of this specification. Furthermore, there

might be another view of that class that presents a completely different set of parts yet is still

consistent with the class's underlying specification. You use the UML's graphical notation to

visualize a system; you use the UML's specification to state the system's details. Given this split,

it's possible to build up a model incrementally by drawing diagrams and then adding semantics to

the model's specifications, or directly by creating a specification, perhaps by reverse engineering

an existing system, and then creating diagrams that are projections into those specifications.

The UML's specifications provide a semantic backplane that contains all the parts of all the

models of a system, each part related to one another in a consistent fashion. The UML's diagrams

are thus simply visual projections into that backplane, each diagram revealing a specific

interesting aspect of the system.

Adornments

Most elements in the UML have a unique and direct graphical notation that provides a visual

representation of the most important aspects of the element. For example, the notation for a class

is intentionally designed to be easy to draw, because classes are the most common element found

in modeling object-oriented systems. The class notation also exposes the most important aspects

of a class, namely its name, attributes, and operations.

A class's specification may include other details, such as whether it is abstract or the visibility of

its attributes and operations. Many of these details can be rendered as graphical or textual

adornments to the class's basic rectangular notation. For example, Figure 2-18 shows a class,

adorned to indicate that it is an abstract class with two public, one protected, and one private

operation.

Figure 2-18. Adornments

Every element in the UML's notation starts with a basic symbol, to which can be added a variety

of adornments specific to that symbol.

Common Divisions

In modeling object-oriented systems, the world often gets divided in several ways.

First, there is the division of class and object. A class is an abstraction; an object is one concrete

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig18

manifestation of that abstraction. In the UML, you can model classes as well as objects, as

shown in Figure 2-19. Graphically, the UML distinguishes an object by using the same symbol

as its class and then simply underlying the object's name.

Figure 2-19. Classes and Objects

In this figure, there is one class, named Customer, together with three objects: Jan (which is

marked explicitly as being a Customer object), :Customer (an anonymous Customer object),

and Elyse (which in its specification is marked as being a kind of Customer object, although it's

not shown explicitly here).

Almost every building block in the UML has this same kind of class/object dichotomy. For

example, you can have use cases and use case executions, components and component instances,

nodes and node instances, and so on.

Second, there is the separation of interface and implementation. An interface declares a contract,

and an implementation represents one concrete realization of that contract, responsible for

faithfully carrying out the interface's complete semantics. In the UML, you can model both

interfaces and their implementations, as shown in Figure 2-20.

Figure 2-20. Interfaces and Implementations

In this figure, there is one component named SpellingWizard.dll that provides (implements)

two interfaces, IUnknown and ISpelling. It also requires an interface, IDictionary, that must

be provided by another component.

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig19
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig20

Almost every building block in the UML has this same kind of interface/implementation

dichotomy. For example, you can have use cases and the collaborations that realize them, as well

as operations and the methods that implement them.

Third, there is the separation of type and role. The type declares the class of an entity, such as an

object, an attribute, or a parameter. A role describes the meaning of an entity within its context,

such as a class, component, or collaboration. Any entity that forms part of the structure of

another entity, such as an attribute, has both characteristics: It derives some of its meaning from

its inherent type and some of its meaning from its role within its context (Figure 2-21).

Figure 2-21. Part with role and type

Extensibility Mechanisms

The UML provides a standard language for writing software blueprints, but it is not possible for

one closed language to ever be sufficient to express all possible nuances of all models across all

domains across all time. For this reason, the UML is opened-ended, making it possible for you to

extend the language in controlled ways. The UML's extensibility mechanisms include

 Stereotypes

 Tagged values

 Constraints

A stereotype extends the vocabulary of the UML, allowing you to create new kinds of building

blocks that are derived from existing ones but that are specific to your problem. For example, if

you are working in a programming language, such as Java or C++, you will often want to model

exceptions. In these languages, exceptions are just classes, although they are treated in very

special ways. Typically, you only want to allow them to be thrown and caught, nothing else. You

can make exceptions first-class citizens in your modelsmeaning that they are treated like basic

building blocksby marking them with an appropriate stereotype, as for the class Overflow in

Figure 2-19.

A tagged value extends the properties of a UML stereotype, allowing you to create new

information in the stereotype's specification. For example, if you are working on a shrink-

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig21
http://umlguide2.uw.hu/gloss01.html#gloss01entry161
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig19
http://umlguide2.uw.hu/gloss01.html#gloss01entry173

wrapped product that undergoes many releases over time, you often want to track the version and

author of certain critical abstractions. Version and author are not primitive UML concepts. They

can be added to any building block, such as a class, by introducing new tagged values to that

building block. In Figure 2-19, for example, the class EventQueue is extended by marking its

version and author explicitly.

A constraint extends the semantics of a UML building block, allowing you to add new rules or

modify existing ones. For example, you might want to constrain the EventQueue class so that all

additions are done in order. As Figure 2-22 shows, you can add a constraint that explicitly marks

these for the operation add.

Figure 2-22. Extensibility Mechanisms

Collectively, these three extensibility mechanisms allow you to shape and grow the UML to your

project's needs. These mechanisms also let the UML adapt to new software technology, such as

the likely emergence of more powerful distributed programming languages. You can add new

building blocks, modify the specification of existing ones, and even change their semantics.

Naturally, it's important that you do so in controlled ways so that through these extensions, you

remain true to the UML's purpose the communication of information.

Architecture:

Any real world system is used by different users. The users can be developers, testers, business

people, analysts and many more. So before designing a system the architecture is made with

different perspectives in mind. The most important part is to visualize the system from different

viewer.s perspective. The better we understand the better we make the system.

UML plays an important role in defining different perspectives of a system. These perspectives

are:

 Design View

 Implementation View

 Process View

 Deployment View

 Usecase View

http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig19
http://umlguide2.uw.hu/gloss01.html#gloss01entry44
http://umlguide2.uw.hu/ch02lev1sec2.html#ch02fig22
http://umlguide2.uw.hu/14021535.html

And the centre is the Use Case view which connects all these four. A Use case represents the

functionality of the system. So the other perspectives are connected with use case.

 Design of a system consists of classes, interfaces and collaboration. UML provides class

diagram, object diagram to support this.

 Implementation defines the components assembled together to make a complete

physical system. UML component diagram is used to support implementation

perspective.

 Process defines the flow of the system. So the same elements as used in Design are also

used to support this perspective.

 Deployment represents the physical nodes of the system that forms the hardware. UML

deployment diagram is used to support this perspective.

Software Development Life Cycle:

The Unified Software Development Process

A software development process is the set of activities needed to transform a user„s

requirements into a software system.

Basic properties:

• use case driven

• architecture centric

• iterative and incremental

Use case Driven

Use cases

• capture requirements of the user,

• divide the development project into smaller subprojects,

• are constantly refined during the whole development process

• are used to verify the correctness of the implemented software

Architecture Centric:

• Find structures which are suitable to achive the function specified in the use cases,

• understandable,

• maintainable,

• reusable for later extensions or newly discovered use cases and describe them, so that they can

be communicated between developers and users.

Inception establishes the business rationale for the project and decides on the scope

of the project.

Elaboration is the phase where you collect more detailed requirements, do high-level analysis

and design to establish a baseline architecture and create the plan for construction.

Construction is an iterative and incremental process. Each iteration in this phase builds

production- quality software prototypes , tested and integrated as subset of the requirements of

the project.

Transition contains beta testing , performance tuning and user training.

